Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development

Trends Genet. 2017 Jan;33(1):3-15. doi: 10.1016/j.tig.2016.10.006. Epub 2016 Dec 2.

Abstract

The bacterium Myxococcus xanthus undergoes multicellular development when starved. Thousands of cells build mounds in which some differentiate into spores. This remarkable feat and the genetic tractability of Myxococcus provide a unique opportunity to understand the evolution of gene regulatory networks (GRNs). Recent work has revealed a GRN involving interconnected cascades of signal-responsive transcriptional activators. Initially, starvation-induced intracellular signals direct changes in gene expression. Subsequently, self-generated extracellular signals provide morphological cues that regulate certain transcriptional activators. However, signals for many of the activators remain to be discovered. A key insight is that activators often work combinatorially, allowing signal integration. The Myxococcus GRN differs strikingly from those governing sporulation of Bacillus and Streptomyces, suggesting that Myxococcus evolved a highly signal-responsive GRN to enable complex multicellular development.

Keywords: Myxococcus xanthus; bacterial development; gene regulatory network; signal transduction; sporulation.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Regulation, Bacterial / genetics
  • Gene Regulatory Networks / genetics*
  • Mutation
  • Myxococcus xanthus / genetics*
  • Myxococcus xanthus / growth & development
  • Signal Transduction / genetics*
  • Spores, Bacterial / genetics*
  • Transcriptional Activation / genetics