3D printing in neurosurgery: A systematic review

Surg Neurol Int. 2016 Nov 14;7(Suppl 33):S801-S809. doi: 10.4103/2152-7806.194059. eCollection 2016.

Abstract

Background: The recent expansion of three-dimensional (3D) printing technology into the field of neurosurgery has prompted a widespread investigation of its utility. In this article, we review the current body of literature describing rapid prototyping techniques with applications to the practice of neurosurgery.

Methods: An extensive and systematic search of the Compendex, Scopus, and PubMed medical databases was conducted using keywords relating to 3D printing and neurosurgery. Results were manually screened for relevance to applications within the field.

Results: Of the search results, 36 articles were identified and included in this review. The articles spanned the various subspecialties of the field including cerebrovascular, neuro-oncologic, spinal, functional, and endoscopic neurosurgery.

Conclusions: We conclude that 3D printing techniques are practical and anatomically accurate methods of producing patient-specific models for surgical planning, simulation and training, tissue-engineered implants, and secondary devices. Expansion of this technology may, therefore, contribute to advancing the neurosurgical field from several standpoints.

Keywords: Additive manufacturing; surgical planning; surgical simulation; three-dimensional printing.

Publication types

  • Review