Diverse specificity of cellulosome attachment to the bacterial cell surface

Sci Rep. 2016 Dec 7:6:38292. doi: 10.1038/srep38292.

Abstract

During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Cell Cycle Proteins / chemistry*
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Cell Wall / chemistry
  • Cell Wall / metabolism
  • Cellulosomes / chemistry*
  • Cellulosomes / metabolism
  • Chromosomal Proteins, Non-Histone / chemistry*
  • Chromosomal Proteins, Non-Histone / genetics
  • Chromosomal Proteins, Non-Histone / metabolism
  • Cloning, Molecular
  • Clostridiales / chemistry*
  • Clostridiales / metabolism
  • Clostridium thermocellum / chemistry*
  • Clostridium thermocellum / metabolism
  • Cohesins
  • Crystallography, X-Ray
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Membrane Proteins / chemistry*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Models, Molecular
  • Multienzyme Complexes / chemistry*
  • Multienzyme Complexes / genetics
  • Multienzyme Complexes / metabolism
  • Mutation
  • Plasmids / chemistry
  • Plasmids / metabolism
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Thermodynamics

Substances

  • Bacterial Proteins
  • Cell Cycle Proteins
  • Chromosomal Proteins, Non-Histone
  • Membrane Proteins
  • Multienzyme Complexes
  • Recombinant Proteins
  • SdbA protein, bacteria