Surface Surgery of the Nickel-Rich Cathode Material LiNi0.815Co0.15Al0.035O2: Toward a Complete and Ordered Surface Layered Structure and Better Electrochemical Properties

ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34879-34887. doi: 10.1021/acsami.6b11431. Epub 2016 Dec 12.


A complete and ordered layered structure on the surface of LiNi0.815Co0.15Al0.035O2 (NCA) has been achieved via a facile surface-oxidation method with Na2S2O8. The field-emission transmission electron microscopy images clearly show that preoxidation of the hydroxide precursor can eliminate the crystal defects and convert Ni(OH)2 into layered β-NiOOH, which leads to a highly ordered crystalline NCA, with its (006) planes perpendicular to the surface in the sintering process. X-ray photoelectron spectroscopy and Raman shift results demonstrate that the contents of Ni2+ and Co2+ ions are reduced with preoxidization on the surface of the hydroxide precursor. The level of Li+/Ni2+ disordering in the modified NCA determined by the peak intensity ratio I(003)/I(104) in X-ray diffraction patterns decreases. Thanks to the complete and ordered layered structure on the surface of secondary particles, lithium ions can easily intercalate/extract in the discharging-charging process, leading to greatly improved electrochemical properties.

Keywords: cation disorder; crystal defect; lithium-ion battery; lithium−nickel−cobalt aluminum oxide; sodium peroxodisulfate; surface oxidation.