Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait
- PMID: 27936603
- DOI: 10.1021/acssynbio.6b00264
Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait
Abstract
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
Keywords: CRISPR-Cas9; biofuel; genetic engineering; hydrolysate; quantitative trait loci; strain development.
Similar articles
-
Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850.Appl Microbiol Biotechnol. 2024 Dec;108(1):21. doi: 10.1007/s00253-023-12843-3. Epub 2023 Dec 30. Appl Microbiol Biotechnol. 2024. PMID: 38159116
-
QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance.FEMS Yeast Res. 2019 Aug 1;19(5):foz047. doi: 10.1093/femsyr/foz047. FEMS Yeast Res. 2019. PMID: 31276593
-
Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering.Metab Eng. 2013 May;17:68-81. doi: 10.1016/j.ymben.2013.02.006. Epub 2013 Mar 18. Metab Eng. 2013. PMID: 23518242
-
Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.FEMS Yeast Res. 2012 Mar;12(2):215-27. doi: 10.1111/j.1567-1364.2011.00777.x. Epub 2012 Jan 24. FEMS Yeast Res. 2012. PMID: 22150948 Review.
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21. Biotechnol Adv. 2013. PMID: 23524005 Review.
Cited by
-
Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross.Elife. 2020 Nov 12;9:e62669. doi: 10.7554/eLife.62669. Elife. 2020. PMID: 33179598 Free PMC article.
-
Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains.Front Genet. 2019 Jul 23;10:683. doi: 10.3389/fgene.2019.00683. eCollection 2019. Front Genet. 2019. PMID: 31396264 Free PMC article.
-
Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance.PLoS Genet. 2018 Feb 23;14(2):e1007217. doi: 10.1371/journal.pgen.1007217. eCollection 2018 Feb. PLoS Genet. 2018. PMID: 29474395 Free PMC article.
-
OsBRKq1, Related Grain Size Mapping, and Identification of Grain Shape Based on QTL Mapping in Rice.Int J Mol Sci. 2021 Feb 25;22(5):2289. doi: 10.3390/ijms22052289. Int J Mol Sci. 2021. PMID: 33669006 Free PMC article.
-
Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850.Appl Microbiol Biotechnol. 2024 Dec;108(1):21. doi: 10.1007/s00253-023-12843-3. Epub 2023 Dec 30. Appl Microbiol Biotechnol. 2024. PMID: 38159116
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
