The dual enzyme LRRK2 hydrolyzes GTP in both its GTPase and kinase domains in vitro

Biochim Biophys Acta Proteins Proteom. 2017 Mar;1865(3):274-280. doi: 10.1016/j.bbapap.2016.12.001. Epub 2016 Dec 8.


The evolutionarily conserved enzyme encoded by the leucine-rich repeat kinase 2 gene, LRRK2, harbors both a Rab-like GTPase domain and a serine/threonine protein kinase domain. Pathogenic mutations in either the GTPase or kinase domain can cause neurodegeneration and Parkinson disease. No high-resolution structure of the human LRRK2 kinase domain is available but the most common mutation, G2019S in the kinase domain, is predicted to alter the ATP-binding pocket structure and interaction with divalent cations. Here we find that the manganese-bound kinase domain acquires a robust ability to utilize both GTP as well as ATP in autophosphorylation of the GTPase domain and phosphorylation of peptide substrates in vitro. The G2019S LRRK2 mutation increases the efficiency of GTP-mediated kinase activity ten-fold compared to WT LRRK2 activity. Moreover, GTP-dependent phosphorylation alters autophosphorylation-site preference in vitro. While additional studies are required to determine the physiological relevance of these observations, LRRK2 is one of the only known kinases to be able to utilize GTP as a phospho-donor at physiological levels in vitro, and thus one of the only known proteins to be able to hydrolyze GTP in two distinct domains within the same protein.

Keywords: Dardarin; Enzyme kinetics; Manganese; Nucleotide-binding pocket; PARK8; ROCO4.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Binding Sites / physiology
  • GTP Phosphohydrolases / metabolism*
  • Guanosine Triphosphate / metabolism*
  • Humans
  • Hydrolysis
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 / genetics
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 / metabolism*
  • Mutation / genetics
  • Phosphorylation / physiology
  • Protein Binding / physiology
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein Structure, Tertiary
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism


  • Recombinant Proteins
  • Guanosine Triphosphate
  • Adenosine Triphosphate
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
  • Protein Serine-Threonine Kinases
  • GTP Phosphohydrolases