The impact of traumatic brain injury (TBI) involves a combination of complex biochemical processes beginning with the initial insult and lasting for days, months and even years post-trauma. These changes range from neuronal integrity losses to neurotransmitter imbalance and metabolite dysregulation, leading to the release of pro- or anti-apoptotic factors which mediate cell survival or death. Such dynamic processes affecting the brain's neurochemistry can be monitored using a variety of neuroimaging techniques, whose combined use can be particularly useful for understanding patient-specific clinical trajectories. Here, we describe how TBI changes the metabolism of essential neurochemical compounds, summarize how neuroimaging approaches facilitate the study of such alterations, and highlight promising ways in which neuroimaging can be used to investigate post-TBI changes in neurometabolism.
Keywords: metabolism; neurochemistry; neuroimaging; pathology; traumatic brain injury (TBI).
Copyright © 2016. Published by Elsevier Ltd.