Boron Substituted Na3V2(P1-x B x O4)3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries
- PMID: 27981002
- PMCID: PMC5157167
- DOI: 10.1002/advs.201600112
Boron Substituted Na3V2(P1-x B x O4)3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries
Erratum in
-
Erratum: Boron Substituted Na3V2(P1-xBxO4)3 Cathode Materials with Enhanced Performance for Sodium-Ion Batteries.Adv Sci (Weinh). 2017 Jan 18;4(2):n/a. doi: 10.1002/advs.201600525. eCollection 2017 Feb. Adv Sci (Weinh). 2017. PMID: 31339505 Free PMC article.
Abstract
The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na3V2P3-x B x O12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na3V2P3-x B x O12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution of crystal and electronic structures and Na storage properties associated with various concentration of B. X-ray diffraction results indicate that the crystal structure of Na3V2P3-x B x O12 (0 ≤ x ≤ 1/3) consisted of rhombohedral Na3V2(PO4)3 with tiny shrinkage of crystal lattice. X-ray absorption spectra and the calculated crystal structures all suggest that the detailed local structural distortion of substituted materials originates from the slight reduction of V-O distances. Na3V2P3-1/6B1/6O12 significantly enhances the structural stability and electrochemical performance, giving remarkable enhanced capacity of 100 and 70 mAh g-1 when the C-rate increases to 5 C and 10 C. Spin-polarized density functional theory (DFT) calculation reveals that, as compared with the pristine Na3V2(PO4)3, the superior electrochemical performance of the substituted materials can be attributed to the emergence of new boundary states near the band gap, lower Na+ diffusion energy barriers, and higher structure stability.
Keywords: DFT calculation; Na3V2(PO4)3; Na‐ion battery; cathode materials; doping.
Figures
Similar articles
-
Enhanced Electrochemical Performance of Ca-Doped Na3V2(PO4)2F3/C Cathode Materials for Sodium-Ion Batteries.ACS Appl Mater Interfaces. 2024 Jan 10;16(1):496-506. doi: 10.1021/acsami.3c12772. Epub 2023 Dec 19. ACS Appl Mater Interfaces. 2024. PMID: 38114419
-
Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries.Sci Bull (Beijing). 2020 May 15;65(9):702-710. doi: 10.1016/j.scib.2020.01.018. Epub 2020 Jan 23. Sci Bull (Beijing). 2020. PMID: 36659103
-
Superior High-Rate and Ultralong-Lifespan Na3V2(PO4)3@C Cathode by Enhancing the Conductivity Both in Bulk and on Surface.ACS Appl Mater Interfaces. 2018 Oct 24;10(42):35963-35971. doi: 10.1021/acsami.8b12055. Epub 2018 Oct 15. ACS Appl Mater Interfaces. 2018. PMID: 30251835
-
Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery.Front Chem. 2020 Jul 24;8:635. doi: 10.3389/fchem.2020.00635. eCollection 2020. Front Chem. 2020. PMID: 32793560 Free PMC article. Review.
-
Na3V2(PO4)3: an advanced cathode for sodium-ion batteries.Nanoscale. 2019 Feb 7;11(6):2556-2576. doi: 10.1039/c8nr09391a. Nanoscale. 2019. PMID: 30672554 Review.
Cited by
-
Investigation of the Inorganic Compounds NaMV2(PO4)3 (M = Fe, Co, Ni) as Anode Materials for Sodium-Ion Batteries.ACS Omega. 2020 Nov 19;5(48):30799-30807. doi: 10.1021/acsomega.0c01922. eCollection 2020 Dec 8. ACS Omega. 2020. PMID: 33324789 Free PMC article.
-
A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3.J Mol Model. 2019 Mar 13;25(4):96. doi: 10.1007/s00894-019-3971-1. J Mol Model. 2019. PMID: 30868249
-
Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High-Rate and Endurable Vanadium Redox Flow Batteries.Adv Sci (Weinh). 2018 Oct 31;5(12):1801281. doi: 10.1002/advs.201801281. eCollection 2018 Dec. Adv Sci (Weinh). 2018. PMID: 30581714 Free PMC article.
-
Flexible Freestanding Carbon Nanofiber-Embedded TiO2 Nanoparticles as Anode Material for Sodium-Ion Batteries.Scanning. 2018 Nov 4;2018:4725328. doi: 10.1155/2018/4725328. eCollection 2018. Scanning. 2018. PMID: 30524641 Free PMC article.
-
Nanotube-structured Na2V3O7 as a Cathode Material for Sodium-Ion Batteries with High-rate and Stable Cycle Performances.Sci Rep. 2018 Nov 21;8(1):17199. doi: 10.1038/s41598-018-35608-9. Sci Rep. 2018. PMID: 30464215 Free PMC article.
References
-
- Yabuuchi N., Kubota K., Dahbi M., Komaba S., Chem Rev 2014, 114, 11636. - PubMed
-
- Pan H., Hu Y.‐S., Chen L., Energy Environ. Sci. 2013, 6, 2338.
-
- Slater M. D., Kim D., Lee E., Johnson C. S., Adv. Funct. Mater. 2013, 23, 947.
-
- Wang L., Lu Y., Liu J., Xu M., Cheng J., Zhang D., Goodenough J. B., Angew. Chem. 2013, 52, 1964. - PubMed
-
- Chen H., Hao Q., Zivkovic O., Hautier G., Du L.‐S., Tang Y., Hu Y.‐Y., Ma X., Grey C. P., Ceder G., Chem. Mater. 2013, 25, 2777.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous