The microbiome: A key regulator of stress and neuroinflammation

Neurobiol Stress. 2016 Mar 4;4:23-33. doi: 10.1016/j.ynstr.2016.03.001. eCollection 2016 Oct.


There is a growing emphasis on the relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health/disease, including brain health and disorders of the central nervous system. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the brain, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis. Changes in this environment can lead to a broad spectrum of physiological and behavioural effects including hypothalamic-pituitary-adrenal (HPA) axis activation, and altered activity of neurotransmitter systems and immune function. While an appropriate, co-ordinated physiological response, such as an immune or stress response are necessary for survival, a dysfunctional response can be detrimental to the host contributing to the development of a number of CNS disorders. In this review, the involvement of the gastrointestinal microbiota in stress-mediated and immune-mediated modulation of neuroendocrine, immune and neurotransmitter systems and the consequential behaviour is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in stress-related disorders as a consequence of neuroinflammatory processes.

Publication types

  • Review