Reciprocal Regulation of mTOR Complexes in Pancreatic Islets From Humans With Type 2 Diabetes

Diabetologia. 2017 Apr;60(4):668-678. doi: 10.1007/s00125-016-4188-9. Epub 2016 Dec 21.


Aims/hypothesis: Mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of nutritional status at the cellular and organismic level. While mTORC1 mediates beta cell growth and expansion, its hyperactivation has been observed in pancreatic islets from animal models of type 2 diabetes and leads to beta cell loss. We sought to determine whether such mTORC1 activation occurs in humans with type 2 diabetes or in metabolically stressed human islets and whether mTORC1 blockade can restore beta cell function of diabetic islets.

Methods: Human islets isolated from non-diabetic controls and individuals with type 2 diabetes, as well as human islets and INS-1E cells exposed to increased glucose (22.2 mmol/l), were examined for mTORC1/2 activity by western blotting analysis of phosphorylation of mTORC1 downstream targets ribosomal protein S6 kinase 1 (S6K1), S6 and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and mTORC2 downstream targets Akt and N-myc downstream regulated 1 (NDRG1). mTORC1/2 complexes' integrity was assessed by immunoprecipitation and subsequent western blot analysis. Cell-type specific expression of activated mTORC1 in human islets was examined by immunostaining of pS6 (Ser 235/236) in human islet sections. Beta cell function was measured by glucose-stimulated insulin secretion (GSIS).

Results: While mTORC2 signalling was diminished, mTORC1 activity was markedly increased in islets from patients with type 2 diabetes and in islets and beta cells exposed to increased glucose concentrations. Under high-glucose conditions in metabolically stressed human islets, we identified a reciprocal regulation of different mTOR complexes, with functional upregulation of mTORC1 and downregulation of mTORC2. pS6 immunostaining showed beta cell-specific upregulation of mTORC1 in islets isolated from patients with type 2 diabetes. Inhibition of mTORC1-S6K1 signalling improved GSIS and restored mTORC2 activity in islets from patients with type 2 diabetes as well as in islets isolated from diabetic db/db mice and mice fed a high-fat/high-sucrose diet.

Conclusions/interpretation: Our data show the aberrant mTORC1 activity in islets from patients with type 2 diabetes, in human islets cultured under diabetes-associated increased glucose conditions and in diabetic mouse islets. This suggests that elevated mTORC1 activation is a striking pathogenic hallmark of islets in type 2 diabetes, contributing to impaired beta cell function and survival in the presence of metabolic stress.

Keywords: Beta cells; Glucose; Human islets; Nutrients; Type 2 diabetes; mTORC1; mTORC2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Adult
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Cell Line
  • Diabetes Mellitus, Type 2 / metabolism*
  • Fluorescent Antibody Technique
  • Glucose / pharmacology
  • Humans
  • Immunoprecipitation
  • In Vitro Techniques
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism*
  • Mechanistic Target of Rapamycin Complex 1
  • Middle Aged
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism*
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism
  • Ribosomal Protein S6 Kinases, 70-kDa / genetics
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism*


  • Adaptor Proteins, Signal Transducing
  • Cell Cycle Proteins
  • EIF4EBP1 protein, human
  • Intracellular Signaling Peptides and Proteins
  • Multiprotein Complexes
  • N-myc downstream-regulated gene 1 protein
  • Phosphoproteins
  • MTOR protein, human
  • TOR Serine-Threonine Kinases
  • Mechanistic Target of Rapamycin Complex 1
  • Ribosomal Protein S6 Kinases, 70-kDa
  • ribosomal protein S6 kinase, 70kD, polypeptide 1
  • Glucose