A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis
- PMID: 28009051
- DOI: 10.1111/nyas.13273
A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis
Abstract
Genomics is now firmly established as a technique for the investigation and reconstruction of communicable disease outbreaks, with many genomic epidemiology studies focusing on revealing transmission routes of Mycobacterium tuberculosis. In this primer, we introduce the basic techniques underlying transmission inference from genomic data, using illustrative examples from M. tuberculosis and other pathogens routinely sequenced by public health agencies. We describe the laboratory and epidemiological scenarios under which genomics may or may not be used, provide an introduction to sequencing technologies and bioinformatics approaches to identifying transmission-informative variation and resistance-associated mutations, and discuss how variation must be considered in the light of available clinical and epidemiological information to infer transmission.
Keywords: genomics; resistance; transmission; tuberculosis.
© 2016 New York Academy of Sciences.
Similar articles
-
Genomic Epidemiology of Tuberculosis.Adv Exp Med Biol. 2017;1019:79-93. doi: 10.1007/978-3-319-64371-7_4. Adv Exp Med Biol. 2017. PMID: 29116630 Review.
-
Declaring a tuberculosis outbreak over with genomic epidemiology.Microb Genom. 2016 May 31;2(5):e000060. doi: 10.1099/mgen.0.000060. eCollection 2016 May. Microb Genom. 2016. PMID: 28348853 Free PMC article.
-
Lessons from molecular epidemiology and comparative genomics.Semin Respir Crit Care Med. 2008 Oct;29(5):467-80. doi: 10.1055/s-0028-1085699. Epub 2008 Sep 22. Semin Respir Crit Care Med. 2008. PMID: 18810681 Review.
-
Molecular epidemiology: a tool for understanding control of tuberculosis transmission.Clin Chest Med. 2005 Jun;26(2):217-31, vi. doi: 10.1016/j.ccm.2005.02.005. Clin Chest Med. 2005. PMID: 15837107 Review.
-
[Future prospects of molecular epidemiology in tuberculosis].Kekkaku. 2009 Dec;84(12):783-4. Kekkaku. 2009. PMID: 20077862 Japanese.
Cited by
-
Statistical Method to Detect Tuberculosis Outbreaks among Endemic Clusters in a Low-Incidence Setting.Emerg Infect Dis. 2018 Mar;24(3):573-575. doi: 10.3201/eid2403.171613. Emerg Infect Dis. 2018. PMID: 29460749 Free PMC article.
-
MentaLiST - A fast MLST caller for large MLST schemes.Microb Genom. 2018 Feb;4(2):e000146. doi: 10.1099/mgen.0.000146. Epub 2018 Jan 10. Microb Genom. 2018. PMID: 29319471 Free PMC article.
-
The Critical Importance of Sampling Fraction to Inferences of Mycobacterium tuberculosis Transmission.Clin Infect Dis. 2018 Jan 6;66(1):159-160. doi: 10.1093/cid/cix750. Clin Infect Dis. 2018. PMID: 29040477 Free PMC article. No abstract available.
-
Use of High-Resolution Geospatial and Genomic Data to Characterize Recent Tuberculosis Transmission, Botswana.Emerg Infect Dis. 2023 May;29(5):977-987. doi: 10.3201/eid2905.220796. Emerg Infect Dis. 2023. PMID: 37081530 Free PMC article.
-
Next-Generation Sequencing of Infectious Pathogens.JAMA. 2019 Mar 5;321(9):893-894. doi: 10.1001/jama.2018.21669. JAMA. 2019. PMID: 30763433 Free PMC article. No abstract available.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
