Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection

J Mol Cell Cardiol. 2017 Feb;103:1-10. doi: 10.1016/j.yjmcc.2016.12.008. Epub 2016 Dec 23.

Abstract

Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.

Keywords: Cardioprotection; G protein-coupled receptor (GPCR); Ischemia/reperfusion (I/R); Phospholipase C (PLC); Protein kinase D (PKD); Ras homolog gene family member A (RhoA); Sphingosine-1-phosphate (S1P).

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cardiomegaly / etiology
  • Cardiomegaly / metabolism
  • Cardiomegaly / pathology
  • Lysophospholipids / metabolism
  • Male
  • Mice
  • Myocardial Reperfusion Injury / metabolism
  • Myocardium / metabolism
  • Myocytes, Cardiac / metabolism*
  • Proprotein Convertases / metabolism*
  • Protein Binding
  • Rats
  • Receptors, Lysosphingolipid / metabolism*
  • Serine Endopeptidases / metabolism*
  • Signal Transduction
  • Sphingosine / analogs & derivatives
  • Sphingosine / metabolism
  • TRPP Cation Channels / metabolism
  • rhoA GTP-Binding Protein / metabolism*

Substances

  • Lysophospholipids
  • Receptors, Lysosphingolipid
  • TRPP Cation Channels
  • sphingosine 1-phosphate
  • Proprotein Convertases
  • Serine Endopeptidases
  • membrane-bound transcription factor peptidase, site 1
  • rhoA GTP-Binding Protein
  • Sphingosine