Studying the neural bases of prism adaptation using fMRI: A technical and design challenge

Behav Res Methods. 2017 Dec;49(6):2031-2043. doi: 10.3758/s13428-016-0840-z.

Abstract

Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

Keywords: Functional imaging; Hemispatial neglect; Prism adaptation; fMRI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology*
  • Adult
  • Aged
  • Female
  • Functional Neuroimaging / instrumentation*
  • Functional Neuroimaging / methods
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Perceptual Disorders / diagnostic imaging
  • Perceptual Disorders / physiopathology*
  • Psychomotor Performance / physiology*
  • Visual Perception / physiology*