Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations

Appl Microbiol Biotechnol. 2017 Apr;101(8):3177-3187. doi: 10.1007/s00253-016-8035-1. Epub 2017 Jan 3.

Abstract

The quality of amino acid substitution patterns in random mutagenesis libraries is decisive for the success in directed evolution campaigns. In this manuscript, we provide a detailed analysis of the amino acid substitutions by analyzing 3000 mutations of three random mutagenesis libraries (1000 mutations each; epPCR with a low-mutation and a high-mutation frequency and SeSaM-Tv P/P) employing lipase A from Bacillus subtilis (bsla). A comparison of the obtained numbers of beneficial variants in the mentioned three random mutagenesis libraries with a site saturation mutagenesis (SSM) (covering the natural diversity at each amino acid position of BSLA) concludes the diversity analysis. Seventy-six percent of the SeSaM-Tv P/P-generated substitutions yield chemically different amino acid substitutions compared to 64% (epPCR-low) and 69% (epPCR-high). Unique substitutions from one amino acid to others are termed distinct amino acid substitutions. In the SeSaM-Tv P/P library, 35% of all theoretical distinct amino acid substitutions were found in the 1000 mutation library compared to 25% (epPCR-low) and 26% (epPCR-high). Thirty-six percent of distinct amino acid substitutions found in SeSaM-Tv P/P were unobtainable by epPCR-low. Comparison with the SSM library showed that epPCR-low covers 15%, epPCR-high 18%, and SeSaM-Tv P/P 21% of obtainable beneficial amino acid positions. In essence, this study provides first insights on the quality of epPCR and SeSaM-Tv P/P libraries in terms of amino acid substitutions, their chemical differences, and the number of obtainable beneficial amino acid positions.

Keywords: Directed evolution; Lipase; Protein engineering; Random mutagenesis; SeSaM; epPCR.

MeSH terms

  • Amino Acid Substitution*
  • Bacillus subtilis / enzymology
  • DNA Mutational Analysis
  • Directed Molecular Evolution / methods
  • Gene Library*
  • Lipase / genetics
  • Mutagenesis*
  • Mutation*
  • Polymerase Chain Reaction / methods
  • Protein Engineering / methods

Substances

  • Lipase