Green synthesis of silver nanoparticles using Andean blackberry fruit extract

Saudi J Biol Sci. 2017 Jan;24(1):45-50. doi: 10.1016/j.sjbs.2015.09.006. Epub 2015 Sep 6.

Abstract

Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV-visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV-vis spectroscopy at λmax = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12-50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.

Keywords: Andean blackberry; Antioxidant; FTIR; Silver nanoparticles; TEM; XRD.