Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins

Langmuir. 2017 Jan 31;33(4):1051-1059. doi: 10.1021/acs.langmuir.6b04304. Epub 2017 Jan 17.

Abstract

Direct delivery of proteins and peptides into living mammalian cells has been accomplished using phospholipid liposomes as carrier particles. Such liposomes are usually taken up via endocytosis where the main part of their cargo is degraded in lysosomes before reaching its destination. Here, fusogenic liposomes, a newly developed molecular carrier system, were used for protein delivery. When such liposomes were loaded with water-soluble proteins and brought into contact with mammalian cells, the liposomal membrane efficiently fused with the cellular plasma membrane delivering the liposomal content to the cytoplasm without degradation. To explore the key factors of proteofection processes, the complex formation of fusogenic liposomes and proteins of interest and the size and zeta potential of the formed fusogenic proteoliposoms were monitored. Intracellular protein delivery was analyzed using fluorescence microscopy and flow cytometry. Proteins such as EGFP, Dendra2, and R-phycoerythrin or peptides such as LifeAct-FITC and NTF2-AlexaFluor488 were successfully incorporated into mammalian cells with high efficiency. Moreover, correct functionality and faithful transport to binding sites were also proven for the imported proteins.

MeSH terms

  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Cytoplasm / metabolism*
  • Humans
  • Liposomes / chemistry*
  • Peptides / chemistry
  • Peptides / metabolism
  • Protein Transport
  • Proteins / chemistry
  • Proteins / metabolism*

Substances

  • Liposomes
  • Peptides
  • Proteins