Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations

Phys Rev Lett. 2016 Dec 23;117(26):267002. doi: 10.1103/PhysRevLett.117.267002. Epub 2016 Dec 23.

Abstract

A fundamental open issue in physics is whether and how the fermion sign problem in quantum Monte Carlo (QMC) simulations can be solved generically. Here, we show that Majorana-time-reversal (MTR) symmetries can provide a unifying principle to solve the fermion sign problem in interacting fermionic models. By systematically classifying Majorana-bilinear operators according to the anticommuting MTR symmetries they respect, we rigorously prove that there are two and only two fundamental symmetry classes which are sign-problem-free and which we call the "Majorana class" and "Kramers class," respectively. Novel sign-problem-free models in the Majorana class include interacting topological superconductors and interacting models of charge-4e superconductors. We believe that our MTR unifying principle could shed new light on sign-problem-free QMC simulation on strongly correlated systems and interacting topological matters.