No Critical Peripheral Fatigue Threshold during Intermittent Isometric Time to Task Failure Test with the Knee Extensors

Front Physiol. 2016 Dec 19:7:627. doi: 10.3389/fphys.2016.00627. eCollection 2016.


It has been proposed that group III and IV muscle afferents provide inhibitory feedback from locomotor muscles to the central nervous system, setting an absolute threshold for the development of peripheral fatigue during exercise. The aim of this study was to test the validity of this theory. Thus, we asked whether the level of developed peripheral fatigue would differ when two consecutive exercise trials were completed to task failure. Ten trained sport students performed two exercise trials to task failure on an isometric dynamometer, allowing peripheral fatigue to be assessed 2 s after maximal voluntary contraction (MVC) post task failure. The trials, separated by 8 min, consisted of repeated sets of 10 × 5-s isometric knee extension followed by 5-s rest between contractions. In each set, the first nine contractions were performed at a target force at 60% of the pre-exercise MVC, while the 10th contraction was a MVC. MVC and evoked force responses to supramaximal electrical femoral nerve stimulation on relaxed muscles were assessed during the trials and at task failure. Stimulations at task failure consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), paired stimuli at 100 Hz (PS100), and 50 stimuli at 100 Hz (tetanus). Time to task failure for the first trial (12.84 ± 5.60 min) was longer (P < 0.001) than for the second (5.74 ± 1.77 min). MVC force was significantly lower at task failure for both trials compared with the pre-exercise values (both P < 0.001), but there were no differences in MVC at task failure in the first and second trials (P = 1.00). However, evoked peak force for SS, PS100, and tetanus were all reduced more at task failure in the second compared to the first trial (P = 0.014 for SS, P < 0.001 for PS100 and tetanus). These results demonstrate that subjects do not terminate exercise at task failure because they have reached a critical threshold in peripheral fatigue. The present data therefore question the existence of a critical peripheral fatigue threshold during intermittent isometric exercise to task failure with the knee extensors.

Keywords: electromyography; evoked peak force; femoral nerve electrical stimulation; knee extension; maximal voluntary contraction; neuromuscular activation; neuromuscular fatigue; rating of perceived exertion.