Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed
- PMID: 28073013
- DOI: 10.1016/j.cub.2016.11.032
Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed
Abstract
Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1-3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.
Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Comment in
-
Biodiversity: More Surprises from the Smallest Marine Eukaryotes.Curr Biol. 2017 Feb 6;27(3):R121-R122. doi: 10.1016/j.cub.2016.12.020. Curr Biol. 2017. PMID: 28171760
Similar articles
-
Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.PLoS One. 2011 Apr 28;6(4):e18979. doi: 10.1371/journal.pone.0018979. PLoS One. 2011. PMID: 21552558 Free PMC article.
-
Spatiotemporal Variations in Antarctic Protistan Communities Highlight Phytoplankton Diversity and Seasonal Dominance by a Novel Cryptophyte Lineage.mBio. 2021 Dec 21;12(6):e0297321. doi: 10.1128/mBio.02973-21. Epub 2021 Dec 14. mBio. 2021. PMID: 34903046 Free PMC article.
-
The evolution of modern eukaryotic phytoplankton.Science. 2004 Jul 16;305(5682):354-60. doi: 10.1126/science.1095964. Science. 2004. PMID: 15256663 Review.
-
Climate, carbon cycling, and deep-ocean ecosystems.Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19211-8. doi: 10.1073/pnas.0908322106. Epub 2009 Nov 9. Proc Natl Acad Sci U S A. 2009. PMID: 19901326 Free PMC article.
-
Carbon concentrating mechanisms in eukaryotic marine phytoplankton.Ann Rev Mar Sci. 2011;3:291-315. doi: 10.1146/annurev-marine-120709-142720. Ann Rev Mar Sci. 2011. PMID: 21329207 Review.
Cited by
-
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates.EMBO Rep. 2024 Apr;25(4):1859-1885. doi: 10.1038/s44319-024-00103-y. Epub 2024 Mar 18. EMBO Rep. 2024. PMID: 38499810 Free PMC article.
-
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome.Elife. 2017 May 12;6:e23717. doi: 10.7554/eLife.23717. Elife. 2017. PMID: 28498102 Free PMC article.
-
Selective Uptake of Pelagic Microbial Community Members by Caribbean Reef Corals.Appl Environ Microbiol. 2021 Apr 13;87(9):e03175-20. doi: 10.1128/AEM.03175-20. Print 2021 Apr 13. Appl Environ Microbiol. 2021. PMID: 33674432 Free PMC article.
-
Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans.Front Microbiol. 2020 Sep 30;11:542372. doi: 10.3389/fmicb.2020.542372. eCollection 2020. Front Microbiol. 2020. PMID: 33101224 Free PMC article.
-
3D intrusions transport active surface microbial assemblages to the dark ocean.Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2319937121. doi: 10.1073/pnas.2319937121. Epub 2024 May 2. Proc Natl Acad Sci U S A. 2024. PMID: 38696469 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
