Structure of a Pancreatic ATP-Sensitive Potassium Channel
- PMID: 28086082
- DOI: 10.1016/j.cell.2016.12.028
Structure of a Pancreatic ATP-Sensitive Potassium Channel
Abstract
ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.
Keywords: ABCC; K(ATP); Kir; PIP(2); SUR; glibenclamide; sulfonylurea.
Copyright © 2017 Elsevier Inc. All rights reserved.
Similar articles
-
N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.J Gen Physiol. 2011 Mar;137(3):299-314. doi: 10.1085/jgp.201010557. Epub 2011 Feb 14. J Gen Physiol. 2011. PMID: 21321069 Free PMC article.
-
ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate KATP channels.J Biol Chem. 2019 Mar 8;294(10):3707-3719. doi: 10.1074/jbc.RA118.005236. Epub 2018 Dec 26. J Biol Chem. 2019. PMID: 30587573 Free PMC article.
-
Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating.Elife. 2017 Jan 16;6:e24149. doi: 10.7554/eLife.24149. Elife. 2017. PMID: 28092267 Free PMC article.
-
Cryo-electron microscopy structures and progress toward a dynamic understanding of KATP channels.J Gen Physiol. 2018 May 7;150(5):653-669. doi: 10.1085/jgp.201711978. Epub 2018 Apr 23. J Gen Physiol. 2018. PMID: 29685928 Free PMC article. Review.
-
ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders.CNS Neurol Disord Drug Targets. 2022;21(2):130-149. doi: 10.2174/1871527320666210119095626. CNS Neurol Disord Drug Targets. 2022. PMID: 33463481 Review.
Cited by
-
Mechanistic insights on KATP channel regulation from cryo-EM structures.J Gen Physiol. 2023 Jan 2;155(1):e202113046. doi: 10.1085/jgp.202113046. Epub 2022 Nov 28. J Gen Physiol. 2023. PMID: 36441147 Free PMC article. Review.
-
The dynamic interplay of PIP2 and ATP in the regulation of the KATP channel.J Physiol. 2022 Oct;600(20):4503-4519. doi: 10.1113/JP283345. Epub 2022 Sep 23. J Physiol. 2022. PMID: 36047384 Free PMC article.
-
Genome wide structural prediction of ABC transporter systems in Bacillus subtilis.Front Microbiol. 2024 Sep 27;15:1469915. doi: 10.3389/fmicb.2024.1469915. eCollection 2024. Front Microbiol. 2024. PMID: 39397791 Free PMC article.
-
Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM.Elife. 2019 Jul 25;8:e46417. doi: 10.7554/eLife.46417. Elife. 2019. PMID: 31343405 Free PMC article.
-
Structure and mechanism of NALCN-FAM155A-UNC79-UNC80 channel complex.Nat Commun. 2022 May 12;13(1):2639. doi: 10.1038/s41467-022-30403-7. Nat Commun. 2022. PMID: 35550517 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
