Developmental regulation of microtubule-associated protein 2 expression in regions of mouse brain

J Neurochem. 1989 Dec;53(6):1910-7. doi: 10.1111/j.1471-4159.1989.tb09261.x.


The relative levels of microtubule-associated protein 2(MAP2) were determined during postnatal development of the mouse in six different discrete brain regions: cerebellum, cortex, hippocampus, olfactory bulb, brainstem, and hypothalamus. Brain homogenates were electrophoresed on sodium dodecyl sulfate-containing gels and analyzed by immunoblotting with MAP2-specific antibodies. The levels of MAP2 in each region were determined using radiolabeled secondary antibodies and densitometric quantification of the autoradiograms over a range that was determined to have a linear response. The results indicated that in all regions and at all ages there was only one high-molecular-weight polypeptide of MAP2, which did not change in electrophoretic mobility after dephosphorylation. In most regions, the levels of MAP2 increased during the first 2 postnatal weeks. However, there were differences in the time course and relative levels of MAP2 between regions. In addition, all regions of the brain expressed the low-molecular-weight form of MAP2 (MAP2c) that was present at birth as a heterogeneous group of polypeptides with an apparent molecular weight of 70K. Most of the heterogeneity of MAP2c, however, was eliminated after dephosphorylation. The levels of MAP2c decreased dramatically after 2 weeks postnatally, except for the olfactory bulb, where the levels of MAP2c remained relatively high even in adults.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging
  • Animals
  • Animals, Newborn
  • Brain / growth & development*
  • Brain / metabolism
  • Mice
  • Mice, Inbred Strains
  • Microtubule-Associated Proteins / metabolism*
  • Olfactory Bulb / metabolism
  • Organ Specificity
  • Phosphorylation


  • Microtubule-Associated Proteins