Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition

ACS Appl Mater Interfaces. 2017 Feb 1;9(4):4192-4201. doi: 10.1021/acsami.6b13571. Epub 2017 Jan 18.

Abstract

Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al2O3, TiO2, ZnO, HfO2, and ZrO2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al2O3 or HfO2 provided the highest level of initial corrosion protection, but films of HfO2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO2 or ZrO2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

Keywords: ALD; EIS; LSV; copper; corrosion protection.