The impact of meal timing on cardiometabolic syndrome indicators in shift workers

Chronobiol Int. 2017;34(3):337-348. doi: 10.1080/07420528.2016.1259242. Epub 2017 Jan 20.

Abstract

The aims of this study were to 1) compare the inflammatory potential of night- and day-shift nurses' diets with regard to time of day and work status and 2) explore how the timing of food intake during work and off-work is associated with cardiometabolic syndrome (CMS) risk factors between these two groups. Female nurses (N = 17; 8 day-shift and 9 night-shift) reported food intake over 9 days. On a middle day off of work, metabolic parameters were measured after an overnight fast. Energy/macronutrient intake and inflammatory potential of dietary intake (as assessed via the Dietary Inflammatory IndexTM) were calculated for nurses' workdays, work nights, off-work days, and off-work nights. Work-night total food intake (grams) accounted for a significant amount of variance in CMS risk factors for night-shift nurses only. Increased total gram consumption during night-shift nurses' work nights was associated with increased lipid levels - independent of the macronutrient composition of the food consumed. Alternatively, for night-shift nurses, work-day intake of several food parameters accounted for a significant proportion of variance in HDL cholesterol levels, with higher intake associated with higher HDL levels. For both day- and night-shift nurses, food intake during the day was more pro-inflammatory regardless of shift type or work status. Our novel approach of combining time-of-day-specific and work-day-specific analyses of dietary inflammatory factors and macronutrient composition with measurement of CMS risk factors suggests a link between meal timing and cardiometabolic health for shift-working nurses.

Keywords: Circadian misalignment; dietary inflammatory index; dietary patterns.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Circadian Rhythm / physiology*
  • Diet
  • Eating / physiology*
  • Energy Intake / physiology*
  • Female
  • Humans
  • Male
  • Meals*
  • Sleep / physiology
  • Time Factors
  • Work Schedule Tolerance / physiology*