Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;64(8):1886-1895.
doi: 10.1109/TBME.2016.2628401. Epub 2016 Nov 15.

Segmentation of Fetal Left Ventricle in Echocardiographic Sequences Based on Dynamic Convolutional Neural Networks

Segmentation of Fetal Left Ventricle in Echocardiographic Sequences Based on Dynamic Convolutional Neural Networks

Li Yu et al. IEEE Trans Biomed Eng. 2017 Aug.

Abstract

Segmentation of fetal left ventricle (LV) in echocardiographic sequences is important for further quantitative analysis of fetal cardiac function. However, image gross inhomogeneities and fetal random movements make the segmentation a challenging problem. In this paper, a dynamic convolutional neural networks (CNN) based on multiscale information and fine-tuning is proposed for fetal LV segmentation. The CNN is pretrained by amount of labeled training data. In the segmentation, the first frame of each echocardiographic sequence is delineated manually. The dynamic CNN is fine-tuned by deep tuning with the first frame and shallow tuning with the rest of frames, respectively, to adapt to the individual fetus. Additionally, to separate the connection region between LV and left atrium (LA), a matching approach, which consists of block matching and line matching, is used for mitral valve (MV) base points tracking. Advantages of our proposed method are compared with an active contour model (ACM), a dynamical appearance model (DAM), and a fixed multiscale CNN method. Experimental results in 51 echocardiographic sequences show that the segmentation results agree well with the ground truth, especially in the cases with leakage, blurry boundaries, and subject-to-subject variations. The CNN architecture can be simple, and the dynamic fine-tuning is efficient.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms