Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement

Mol Biol Cell. 2017 Apr 1;28(7):922-934. doi: 10.1091/mbc.E16-10-0733. Epub 2017 Feb 1.

Abstract

Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients.

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins / metabolism*
  • Cell Movement
  • Chemotaxis / physiology
  • Cytoskeleton / metabolism
  • Dictyostelium / metabolism
  • Models, Biological
  • Pseudopodia / metabolism
  • Signal Transduction
  • ras Proteins / metabolism*

Substances

  • Actins
  • ras Proteins