In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text]; [Formula: see text] and [Formula: see text], [Formula: see text] and [Formula: see text] where [Formula: see text], [Formula: see text], u, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], are real-valued measurable functions both in s and r on [Formula: see text].
Keywords: Urysohn integral equations; Volterra-Hammerstein integral equations; common [Formula: see text]-property; common fixed point; weakly compatible maps.