Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
- PMID: 28163647
- PMCID: PMC5253919
- DOI: 10.12942/lrr-2005-3
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
Abstract
The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, [Formula: see text]-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Figures
Similar articles
-
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case.Living Rev Relativ. 2012;15(1):4. doi: 10.12942/lrr-2012-4. Epub 2012 Mar 9. Living Rev Relativ. 2012. PMID: 28179835 Free PMC article. Review.
-
Beyond the fisher-matrix formalism: exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation.Phys Rev Lett. 2011 Nov 4;107(19):191104. doi: 10.1103/PhysRevLett.107.191104. Epub 2011 Nov 4. Phys Rev Lett. 2011. PMID: 22181593
-
Detectability and parameter estimation of stellar origin black hole binaries with next generation gravitational wave detectors.Sci Rep. 2022 Oct 26;12(1):17940. doi: 10.1038/s41598-022-19540-7. Sci Rep. 2022. PMID: 36289256 Free PMC article.
-
Toward the detection of gravitational waves under non-Gaussian noises II. Independent component analysis.Proc Jpn Acad Ser B Phys Biol Sci. 2016;92(8):336-345. doi: 10.2183/pjab.92.336. Proc Jpn Acad Ser B Phys Biol Sci. 2016. PMID: 27725472 Free PMC article.
-
Gravitational wave detection using laser interferometry beyond the standard quantum limit.Philos Trans A Math Phys Eng Sci. 2018 May 28;376(2120):20170289. doi: 10.1098/rsta.2017.0289. Philos Trans A Math Phys Eng Sci. 2018. PMID: 29661977 Review.
Cited by
-
A template-free approach for waveform extraction of gravitational wave events.Sci Rep. 2021 Oct 15;11(1):20507. doi: 10.1038/s41598-021-98821-z. Sci Rep. 2021. PMID: 34654861 Free PMC article.
-
Coalescence of Black Hole-Neutron Star Binaries.Living Rev Relativ. 2011;14(1):6. doi: 10.12942/lrr-2011-6. Epub 2011 Aug 29. Living Rev Relativ. 2011. PMID: 28163619 Free PMC article. Review.
-
Physics, Astrophysics and Cosmology with Gravitational Waves.Living Rev Relativ. 2009;12(1):2. doi: 10.12942/lrr-2009-2. Epub 2009 Mar 4. Living Rev Relativ. 2009. PMID: 28163611 Free PMC article. Review.
References
-
- Abbott B, LIGO Scientific Collaboration et al. Analysis of LIGO data for gravitational waves from binary neutron stars. Phys. Rev. D. 2004;69(122001):1–16.
-
- Abbott B, LIGO Scientific Collaboration et al. First upper limits from LIGO on gravitational wave bursts. Phys. Rev. D. 2004;69(102001):1–21.
-
- Abbott B, LIGO Scientific Collaboration et al. Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors. Phys. Rev. D. 2004;69(082004):1–16.
-
- Adler RJ. The Geometry of Random Fields. Chichester, U.K.; New York, U.S.A.: Wiley; 1981.
-
- Allen B. The stochastic gravity-wave background: Sources and detection. In: Marck J-A, Lasota J-P, editors. Relativistic gravitation and gravitational radiation; Cambridge, U.K.: Cambridge University Press; 1997.
Publication types
LinkOut - more resources
Full Text Sources