Metal-centred azaphosphatriptycene gear with a photo- and thermally driven mechanical switching function based on coordination isomerism

Nat Commun. 2017 Feb 8:8:14296. doi: 10.1038/ncomms14296.

Abstract

Metal ions can serve as a centre of molecular motions due to their coordination geometry, reversible bonding nature and external stimuli responsiveness. Such essential features of metal ions have been utilized for metal-mediated molecular machines with the ability to motion switch via metallation/demetallation or coordination number variation at the metal centre; however, motion switching based on the change in coordination geometry remain largely unexplored. Herein, we report a PtII-centred molecular gear that demonstrates control of rotor engagement and disengagement based on photo- and thermally driven cis-trans isomerization at the PtII centre. This molecular rotary motion transmitter has been constructed from two coordinating azaphosphatriptycene rotators and one PtII ion as a stator. Isomerization between an engaged cis-form and a disengaged trans-form is reversibly driven by ultraviolet irradiation and heating. Such a photo- and thermally triggered motional interconversion between engaged/disengaged states on a metal ion would provide a selector switch for more complex interlocking systems.

Publication types

  • Research Support, Non-U.S. Gov't