Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;3(1):3.
doi: 10.12942/lrr-2000-3. Epub 2000 Jun 29.

Gravitational Wave Detection by Interferometry (Ground and Space)

Affiliations
Review

Gravitational Wave Detection by Interferometry (Ground and Space)

Sheila Rowan et al. Living Rev Relativ. 2000.

Abstract

Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems being built around the world - LIGO (USA), VIRGO (Italy/France), TAMA 300 (Japan) and GEO 600 (Germany/UK) - and in LISA, a proposed space-borne interferometer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Some possible sources for ground based and space-borne detectors.
Figure 2
Figure 2
Schematic of gravitational wave detector using laser interferometry.
Figure 3
Figure 3
Proposed sensitivity for the LIGO 1 and planned LIGO 2 detectors.
Figure 4
Figure 4
Schematic view of one suspension system for use in the GEO 600 interferometer.
Figure 5
Figure 5
Prototype ‘monolithic’ fused silica test mass suspension. The mass (3 kg) here is of 12.5 cm diameter. Note final suspension will use four fibres.
Figure 6
Figure 6
Michelson interferometers with (a) delay lines and (b) Fabry-Perot cavities in the arms of the interferometer.
Figure 7
Figure 7
The implementation of power and signal recycling on the two interferometers shown in the previous figure, Fig. 6.
Figure 8
Figure 8
The 10 m prototype gravitational wave detector at Glasgow.
Figure 9
Figure 9
A bird’s eye view of the LIGO detector, sited in Hanford, Washington State.
Figure 10
Figure 10
Sensitivity curves for VIRGO showing the total contribution of the important noise sources. The signal levels expected from a number of pulsars after six months of integration are shown as are signal levels from some compact binary systems of different mass and at different distances.
Figure 11
Figure 11
Noise contributions to the expected sensitivity of the LIGO 2 interferometer.
Figure 12
Figure 12
The proposed LISA detector.

Similar articles

  • Gravitational Wave Detection by Interferometry (Ground and Space).
    Pitkin M, Reid S, Rowan S, Hough J. Pitkin M, et al. Living Rev Relativ. 2011;14(1):5. doi: 10.12942/lrr-2011-5. Epub 2011 Jul 11. Living Rev Relativ. 2011. PMID: 28163618 Free PMC article. Review.
  • Gravitational wave: gamma-ray burst connections.
    Hough J. Hough J. Philos Trans A Math Phys Eng Sci. 2007 May 15;365(1854):1335-42. doi: 10.1098/rsta.2006.1977. Philos Trans A Math Phys Eng Sci. 2007. PMID: 17293333
  • The missing link in gravitational-wave astronomy: A summary of discoveries waiting in the decihertz range.
    Sedda MA, Berry CPL, Jani K, Amaro-Seoane P, Auclair P, Baird J, Baker T, Berti E, Breivik K, Caprini C, Chen X, Doneva D, Ezquiaga JM, Ford KES, Katz ML, Kolkowitz S, McKernan B, Mueller G, Nardini G, Pikovski I, Rajendran S, Sesana A, Shao L, Tamanini N, Warburton N, Witek H, Wong K, Zevin M. Sedda MA, et al. Exp Astron (Dordr). 2021;51(3):1427-1440. doi: 10.1007/s10686-021-09713-z. Epub 2021 Apr 29. Exp Astron (Dordr). 2021. PMID: 34720416 Free PMC article.
  • Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.
    Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Akutsu T, Allen G, Allocca A, Aloy MA, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Ando M, Angelova SV, Antier S, Appert S, Arai K, Arai K, Arai Y, Araki S, Araya A, Araya MC, Areeda JS, Arène M, Aritomi N, Arnaud N, Arun KG, Ascenzi S, Ashton G, Aso Y, Aston SM, Astone P, Aubin F, Aufmuth P, AultONeal K, Austin C, Avendano V, Avila-Alvarez A, Babak S, Bacon P, Badaracco F, Bader MKM, Bae SW, Bae YB, Baiotti L, Bajpai R, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Bejger M, Belahcene I, Bell AS, Beniwal D, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhandare R, Bidler J, Bilenko IA, Bilgili SA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Bizouard MA, Blackburn JK, Blair CD, Blair DG,… See abstract for full author list ➔ Abbott BP, et al. Living Rev Relativ. 2020;23(1):3. doi: 10.1007/s41114-020-00026-9. Epub 2020 Sep 28. Living Rev Relativ. 2020. PMID: 33015351 Free PMC article. Review.
  • Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries.
    Blanchet L. Blanchet L. Living Rev Relativ. 2014;17(1):2. doi: 10.12942/lrr-2014-2. Epub 2014 Feb 13. Living Rev Relativ. 2014. PMID: 28179846 Free PMC article. Review.

Cited by

References

    1. Abramovici A, Althouse W, Camp J, Durance D, Giaime JA, Gillespie A, Kawamura S, Kuhnert A, Lyons T, Raab FJ, Savage RL, Jr., Shoemaker D, Sievers L, Spero R, Vogt R, Weiss R, Whitcomb S, Zucker M. “Improved sensitivity in a gravitational wave interferometer and implications for LIGO”. Phys. Lett. A. 1996;218(3-6):157–163. doi: 10.1016/0375-9601(96)00377-5. - DOI
    1. Amaldi E, Aguiar O, Bassan M, Bonifazi P, Carelli P, Castellano MG, Cavallari G, Coccia E, Cosmelli C, Fairbank WM, Frasca S, Foglietti V, Habel R, Hamilton WO, Henderson J, Johnson W, Lane KR, Mann AG, McAshan MS, Michelson PF, Modena I, Palletino GV, Pizzella G, Price JC, Rapagnani R, Ricci F, Solomonson N, Stevenson TR, Taber RC, Xu B-X. “First gravity wave coincident experiment between resonant cryogenic detectors: Louisiana-Rome-Stanford”. Astron. Astrophys. 1989;216:325–332.
    1. Araya A, Mio N, Tsubono K, Suehiro K, Telada S, Ohashi M, Fujimoto M-K. “Optical mode cleaner with suspended mirrors”. Appl. Opt. 1997;36(7):1446–1453. doi: 10.1364/AO.36.001446. - DOI - PubMed
    1. Barish BC. “LIGO: Status and Prospects”. In: Tsubono K, Fujimoto MK, Kuroda K, editors. Proc. of Conference on Gravitational Wave Detection, Tokyo. Tokyo: Universal Academy Press Inc; 1997. pp. 163–173.
    1. Beccaria M, et al. “Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity”. Class. Quantum Grav. 1998;15:1–24. doi: 10.1088/0264-9381/15/1/002. - DOI

LinkOut - more resources