The interplay of stiffness and force anisotropies drives embryo elongation
- PMID: 28181905
- PMCID: PMC5371431
- DOI: 10.7554/eLife.23866
The interplay of stiffness and force anisotropies drives embryo elongation
Abstract
The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo.
Keywords: C. elegans; actomyosin; cell biology; developmental biology; embryonic elongation; fiber-reinforced material; force anisotropy; laser nano-ablation; stem cells; stiffness anisotropy.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
Assessing the Contribution of Active and Passive Stresses in C. elegans Elongation.Phys Rev Lett. 2018 Dec 28;121(26):268102. doi: 10.1103/PhysRevLett.121.268102. Phys Rev Lett. 2018. PMID: 30636158
-
The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis.Development. 2007 Jul;134(13):2469-79. doi: 10.1242/dev.005074. Epub 2007 May 30. Development. 2007. PMID: 17537791
-
Force Transmission between Three Tissues Controls Bipolar Planar Polarity Establishment and Morphogenesis.Curr Biol. 2019 Apr 22;29(8):1360-1368.e4. doi: 10.1016/j.cub.2019.02.059. Epub 2019 Mar 28. Curr Biol. 2019. PMID: 30930039
-
C. elegans Embryonic Morphogenesis.Curr Top Dev Biol. 2016;116:597-616. doi: 10.1016/bs.ctdb.2015.11.012. Epub 2016 Feb 1. Curr Top Dev Biol. 2016. PMID: 26970644 Review.
-
The cytoskeleton and epidermal morphogenesis in C. elegans.Exp Cell Res. 2004 Nov 15;301(1):84-90. doi: 10.1016/j.yexcr.2004.08.017. Exp Cell Res. 2004. PMID: 15501449 Review.
Cited by
-
HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.PLoS One. 2018 Feb 21;13(2):e0193279. doi: 10.1371/journal.pone.0193279. eCollection 2018. PLoS One. 2018. PMID: 29466456 Free PMC article.
-
C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis.Development. 2022 Sep 15;149(18):dev200775. doi: 10.1242/dev.200775. Epub 2022 Sep 20. Development. 2022. PMID: 36125129 Free PMC article.
-
Tissue-Specific Functions of fem-2/PP2c Phosphatase and fhod-1/formin During Caenorhabditis elegans Embryonic Morphogenesis.G3 (Bethesda). 2018 Jul 2;8(7):2277-2290. doi: 10.1534/g3.118.200274. G3 (Bethesda). 2018. PMID: 29720391 Free PMC article.
-
The apical ECM preserves embryonic integrity and distributes mechanical stress during morphogenesis.Development. 2017 Dec 1;144(23):4336-4349. doi: 10.1242/dev.150383. Epub 2017 May 19. Development. 2017. PMID: 28526752 Free PMC article.
-
Force-mediated cellular anisotropy and plasticity dictate the elongation dynamics of embryos.Sci Adv. 2021 Jun 30;7(27):eabg3264. doi: 10.1126/sciadv.abg3264. Print 2021 Jun. Sci Adv. 2021. PMID: 34193426 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
