1. Under voltage-clamp dissociated adult and foetal rat superior cervical ganglion (s.c.g.) cells exhibited a non-inactivating voltage- and time-dependent component of K+ current termed the M-current (IM). IM was detected and measured from the current decay during hyperpolarizing voltage steps applied from potentials where IM was pre-activated. 2. Neither the resting membrane current nor the amplitude of these current decay relaxations were reduced by omitting Ca from the bathing fluid, showing that the M-current was not a 'Ca-activated' K-current dependent on a primary Ca-influx. Concentrations of (+)-tubocurarine sufficient to block the slow Ca-activated K-current IAHP did not inhibit IM or antagonize the effect of muscarinic agonists on IM, showing that IM was not contaminated by IAHP. Tetraethylammonium (1 mM), which blocks the fast Ca-activated K-current IC, produced a small inhibition of IM. This was not due to contamination of IM by IC since muscarinic agonists did not consistently block IC. 3. The muscarinic agonists muscarine, oxotremorine, McN-A-343 and methacholine reversibly suppressed IM, resulting in an inward (depolarizing) current. The rank order of potency was: oxotremorine greater than or equal to muscarine greater than McN-A-343 greater than methacholine. 4. The suppression of IM by muscarine was similar in cultured cells derived from adult and foetal tissue to that seen in the intact ganglia. 5. IM-suppression by muscarine was inhibited by pirenzepine (Pz) and AF-DX 116 with mean pKB values of 7.53 +/- 0.13 (n = 3) and 6.02 +/- 0.13 (n = 4) respectively. 6. The suppression of IM by muscarinic agonists was not affected by gallamine (10-30 microM). 4-Diphenylacetoxy-N-methylpiperidine methiodide inhibited the response at 300 nM. 7. Pirenzepine inhibited the contractions of the guinea-pig isolated ileum produced by muscarine with a mean pKB of 6.37 +/- 0.03 (n = 8). 8. These results suggest that the receptors mediating suppression of the M-current accord with those designated pharmacologically as M1 and that these receptors reach maturity at a very early stage in the development of the rat s.c.g.