Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study

Cell Transplant. 2017 Mar 13;26(3):503-512. doi: 10.3727/096368916X694373. Epub 2017 Feb 14.

Abstract

Ataxia is one of the most devastating symptoms of many neurodegenerative disorders. As of today, there is not any effective treatment to retard its progression. Mesenchymal stem cells (MSCs) have shown promise in treating neurodegenerative diseases. We hereby report the results of a phase I/IIa clinical study conducted in Taiwan to primarily evaluate the safety, tolerability, and, secondarily, the possible efficacy of intravenous administration of allogeneic adipose tissue-derived MSCs from healthy donors. Six patients with spinocerebellar ataxia type 3 and one with multiple system atrophy-cerebellar type were included in this open-label study with intravenous administration of 106 cells/kg body weight. The subjects were closely monitored for 1 year for safety (vital signs, complete blood counts, serum biochemical profiles, and urinalysis) and possible efficacy (scale for assessment and rating of ataxia and sensory organization testing scores, metabolite ratios on the brain magnetic resonance spectroscopy, and brain glucose metabolism of 18-fluorodeoxyglucose using positron emission tomography). No adverse events related to the injection of MSCs during the 1-year follow-up were observed. The intravenous administration of allogeneic MSCs seemed well tolerated. Upon study completion, all patients wished to continue treatment with the allogeneic MSCs. We conclude that allogeneic MSCs given by intravenous injection seems to be safe and tolerable in patients with spinocerebellar ataxia type 3, thus supporting advancement of the clinical development of allogeneic MSCs for the treatment of spinocerebellar ataxias (SCAs) in a randomized, double-blind, placebo-controlled phase II trials.

Publication types

  • Clinical Trial, Phase I
  • Clinical Trial, Phase II
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Brain / pathology
  • Cells, Cultured
  • Double-Blind Method
  • Female
  • Humans
  • Magnetic Resonance Spectroscopy
  • Male
  • Mesenchymal Stem Cell Transplantation / methods*
  • Middle Aged
  • Spinocerebellar Ataxias / therapy*
  • Transplantation, Homologous / methods*
  • Young Adult