Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin

J Neurosci. 2017 Mar 22;37(12):3181-3191. doi: 10.1523/JNEUROSCI.3632-16.2017. Epub 2017 Feb 17.


The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders.SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease.

Keywords: Alzheimer's disease; Reelin; dendrite; protease; proteolysis.

MeSH terms

  • ADAMTS Proteins / metabolism*
  • Animals
  • Cell Adhesion Molecules, Neuronal / metabolism*
  • Cells, Cultured
  • Cerebral Cortex / metabolism*
  • Enzyme Activation
  • Extracellular Matrix Proteins / metabolism*
  • Hippocampus / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred ICR
  • Mice, Knockout
  • Nerve Tissue Proteins / metabolism*
  • Neurons / metabolism*
  • Procollagen N-Endopeptidase / metabolism*
  • Protein Binding
  • Serine Endopeptidases / metabolism*
  • Signal Transduction / physiology*


  • Cell Adhesion Molecules, Neuronal
  • Extracellular Matrix Proteins
  • Nerve Tissue Proteins
  • Serine Endopeptidases
  • reelin protein
  • ADAMTS Proteins
  • ADAMTS3 protein, human
  • Procollagen N-Endopeptidase