Objective: Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective.
Materials and methods: A decision tree and Markov model were developed to compare cost-effectiveness. Literature review and expert opinion were used as input. A strategy was deemed cost-effective if the costs of gaining one quality-adjusted life year (incremental cost-effectiveness ratio) did not exceed the willingness-to-pay threshold of €80,000 (≈$85,000 in January 2017). A base case analysis was performed to compare systematic transrectal ultrasound- and image fusion-guided biopsies. Because of a lack of appropriate literature regarding the accuracy of direct in-bore MRI-guided biopsy, a threshold analysis was performed.
Results: The incremental cost-effectiveness ratio for fusion-guided biopsy compared with systematic transrectal ultrasound-guided biopsy was €1386 ($1470) per quality-adjusted life year gained, which was below the willingness-to-pay threshold and thus assumed cost-effective. If MRI findings are normal in a patient with clinically significant prostate cancer, the sensitivity of direct in-bore MRI-guided biopsy has to be at least 88.8%. If that is the case, the incremental cost-effectiveness ratio is €80,000 per quality-adjusted life year gained and thus cost-effective.
Conclusion: Fusion-guided biopsy seems to be cost-effective compared with systematic transrectal ultrasound-guided biopsy. Future research is needed to determine whether direct in-bore MRI-guided biopsy is the best pathway; in this study a threshold was calculated at which it would be cost-effective.
Keywords: MRI; biopsy; cost-effectiveness; prostate cancer.