Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate

Biochem J. 1987 Aug 15;246(1):139-47. doi: 10.1042/bj2460139.

Abstract

1. We have studied the metabolism of Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) by rat liver homogenates incubated in a medium resembling intracellular ionic strength and pH. 2. Ins(1,3,4,5)P4 was dephosphorylated to a single inositol trisphosphate product, Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate), the identity of which was confirmed by periodate degradation, followed by reduction and dephosphorylation to yield altritol. 3. The major InsP2 (inositol bisphosphate) product was inositol 3,4-bisphosphate [Shears, Storey, Morris, Cubitt, Parry, Michell & Kirk (1987) Biochem. J. 242, 393-402]. Small quantities of a second InsP2 product was also detected in some experiments, but its isomeric configuration was not identified. 4. The Ins(1,3,4,5)P4 5-phosphatase activity was primarily associated with plasma membranes. 5. ATP (5 mM) decreased the membrane-associated Ins(1,4,5)P3 5-phosphatase and Ins(1,3,4,5)P4 5-phosphatase activities by 40-50%. This inhibition was imitated by AMP, adenosine 5'-[beta gamma-imido]triphosphate, adenosine 5'-[gamma-thio]triphosphate or PPi, but not by adenosine or Pi. A decrease in [ATP] from 7 to 3 mM halved the inhibition of Ins(1,3,4,5)P4 5-phosphatase activity, but the extent of inhibition was not further decreased unless [ATP] less than 0.1 mM. 6. Ins(1,3,4,5)P4 5-phosphatase was insensitive to 50 mM-Li+, but was inhibited by 5 mM-2,3-bisphosphoglycerate. 7. The Ins(1,3,4,5)P4 5-phosphatase activity was unchanged by cyclic AMP, GTP, guanosine 5'-[beta gamma-imido]triphosphate or guanosine 5'-[gamma-thio]triphosphate, or by increasing [Ca2+] from 0.1 to 1 microM. 8. Ins(1,3,4)P3 was phosphorylated in an ATP-dependent manner to an isomer of InsP4 that was partially separable on h.p.l.c. from Ins(1,3,4,5)P4. The novel InsP4 appears to be Ins(1,3,4,6)P4. Its metabolic fate and function are not known.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / pharmacology
  • Animals
  • Calcium / pharmacology
  • Chromatography, High Pressure Liquid
  • Cyclic AMP / pharmacology
  • Guanosine Triphosphate / pharmacology
  • Inositol Phosphates / metabolism*
  • Inositol Polyphosphate 5-Phosphatases
  • Kinetics
  • Liver / drug effects
  • Liver / metabolism*
  • Male
  • Phosphoric Monoester Hydrolases / antagonists & inhibitors
  • Phosphoric Monoester Hydrolases / metabolism
  • Phosphorylation
  • Phosphotransferases (Alcohol Group Acceptor)*
  • Phosphotransferases / metabolism
  • Rats
  • Subcellular Fractions / metabolism
  • Sugar Phosphates / metabolism*

Substances

  • Inositol Phosphates
  • Sugar Phosphates
  • inositol-1,3,4,5-tetrakisphosphate
  • inositol-1,3,4,6-tetrakisphosphate
  • Guanosine Triphosphate
  • Adenosine Triphosphate
  • Cyclic AMP
  • Phosphotransferases
  • Phosphotransferases (Alcohol Group Acceptor)
  • Inositol 1,4,5-trisphosphate 3-kinase
  • Phosphoric Monoester Hydrolases
  • Inositol Polyphosphate 5-Phosphatases
  • Calcium