Ursodeoxycholate and its taurine conjugate tauroursodeoxycholate (TUDC) promote choleresis by triggering the insertion of transport proteins for bile acids into the canalicular and basolateral membranes of hepatocytes. In addition, TUDC exerts hepatoprotective and anti-apoptotic effects, can counteract the action of toxic bile acids and reduce endoplasmic reticulum stress. TUDC can also initiate the differentiation of multipotent mesenchymal stem cells (MSC) including hepatic stellate cells and promote their development into hepatocyte-like cells. Although the hepatoprotective and choleretic action of TUDC is empirically used in clinical medicine since decades, the underlying molecular mechanisms remained largely unclear. Since TUDC has little or no potency to activate known bile acid receptors, such as farnesoid X receptor and transmembrane G protein-coupled bile acid receptor, other receptors must be involved in TUDC-mediated signaling. Recent research demonstrates that integrins serve as sensors for TUDC. After binding of TUDC to α5β1-integrin, the β1-integrin subunit becomes activated through a conformational change, thereby triggering integrin signaling with the downstream activation of focal adhesion kinase, c-Src, the epidermal growth factor receptor and activation of the mitogen-activated protein kinases, Erks and p38. These events trigger choleresis through a coordinated insertion of the sodium-taurocholate cotransporting polypeptide into the basolateral membrane and of the bile salt export pump into the canalicular membrane. In addition to its choleretic action, TUDC-induced integrin activation triggers a cyclic adenosine monophosphate-dependent protein kinase A activation in hepatocytes, which provides the basis for the anti-apoptotic effect of TUDC. On the other hand, the TUDC-induced stimulation of MSC differentiation appears not to be mediated by integrins. This article gives a brief overview about our work on the signaling network-mediating hepatoprotection by TUDC.
© 2017 S. Karger AG, Basel.