The underlying challenge of drug delivery is the safe, controlled transport of a supply of therapeutic agent to its intended location at its effective dose. New and expanding solutions to payload delivery are being discovered in the field of hydrogels. Hydrogels are highly hydrated polymer networks that vary greatly depending on the underlying molecular structure. The subgroup of hydrogels that will be the focus of this chapter is the β-hairpin peptide hydrogel. These peptide-based materials are formed through a molecular self-assembly mechanism that only occurs after desired triggering of intramolecular peptide folding. Once folded, the β-hairpins assemble intermolecularly into a nanofibrillar network. The physical properties of the hydrogel network and its peptide foundation result in advantageous material properties which can be used for multiple biomedical applications including drug delivery. As a shear thinning solid that is easily injectable, cytocompatible, customizable, and well characterized, β-hairpin hydrogels are an exciting candidate as a drug delivery vehicle.
Keywords: Biomaterial; Cell scaffolding; Drug encapsulation; Hydrogel; Peptide; Self assembly.
Copyright © 2017 Elsevier B.V. All rights reserved.