Time correlation between mononucleosis and initial symptoms of MS

Neurol Neuroimmunol Neuroinflamm. 2017 Feb 27;4(3):e308. doi: 10.1212/NXI.0000000000000308. eCollection 2017 May.


Objective: To determine the average age of MS onset vs the age at which Epstein-Barr infection has previously occurred and stratify this analysis by sex and the blood level of Epstein-Barr nuclear antigen 1 (EBNA1) antibody.

Methods: Using infectious mononucleosis (IM) as a temporal marker in data from the Swedish epidemiologic investigation of MS, 259 adult IM/MS cases were identified and then augmented to account for "missing" childhood data so that the average age of MS onset could be determined for cases binned by age of IM (as stratified by sex and EBNA1 titer level).

Results: Mean age of IM vs mean age of MS reveals a positive time correlation for all IM ages (from ∼5 to ∼30 years), with IM-to-MS delay decreasing with increased age. When bifurcated by sex or EBNA1 blood titer levels, males and high-titer subpopulations show even stronger positive time correlation, while females and low-titer populations show negative time correlation in early childhood (long IM/MS delay). The correlation becomes positive in females beyond puberty.

Conclusions: IM/MS time correlation implies causality if IM is time random. Alternative confounding models seem implausible, in light of constraints imposed by time-invariant delay observed here. Childhood infection with Epstein-Barr virus (EBV) in females and/or those genetically prone to low EBNA1 blood titers will develop MS slowly. Males and/or high EBNA1-prone develop MS more rapidly following IM infection at all ages. For all, postpubescent EBV infection is critical for the initiation and rapid development of MS.