Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression

Mycoses. 2017 Jul;60(7):462-468. doi: 10.1111/myc.12611. Epub 2017 Mar 10.

Abstract

This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole-resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27-A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT-qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.

Keywords: animal; antifungal; gene expression; resistance; yeast.

MeSH terms

  • Animals
  • Antifungal Agents / pharmacology*
  • Azoles / pharmacology*
  • Biological Transport, Active
  • Candida albicans / chemistry
  • Candida albicans / drug effects*
  • Candida albicans / genetics
  • Candida albicans / isolation & purification
  • Candidiasis / microbiology
  • Candidiasis / veterinary
  • Carrier State / microbiology
  • Carrier State / veterinary
  • Drug Resistance, Fungal*
  • Ergosterol / analysis
  • Gene Expression Profiling
  • Gene Expression*
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Real-Time Polymerase Chain Reaction

Substances

  • Antifungal Agents
  • Azoles
  • Membrane Transport Proteins
  • Ergosterol