The neural control of interlimb coordination during mammalian locomotion

J Neurophysiol. 2017 Jun 1;117(6):2224-2241. doi: 10.1152/jn.00978.2016. Epub 2017 Mar 15.


Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.

Keywords: central pattern generator; interlimb coordination; locomotion; propriospinal; somatosensory; spinal cord injury; supraspinal.

Publication types

  • Review

MeSH terms

  • Animals
  • Forelimb / physiology*
  • Hindlimb / physiology*
  • Humans
  • Locomotion / physiology*