Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system

Mol Gen Genet. 1988 Jan;211(1):27-34. doi: 10.1007/BF00338389.

Abstract

In the progeny of an active Mutator plant, the number of Mu elements increases on self-pollination and maintains the average parental Mu content on outcrossing to a non-Mutator line; both patterns of transmission require an increase in the absolute number of Mu elements from one generation to the next. The same average copy number of Mu elements is transmitted through the male and female, but there is wide variation in the absolute copy number among the progeny. In inactive Mutator plants-defined both by the loss of somatic instability at a reporter gene (bronze2-mu1) and by modification of the HinfI sites in the terminal inverted repeat sequences of Mu elements - the absolute copy number of Mu elements is fixed in the parent. Thus, in outcrosses Mu element number is halved, and on self-pollination Mu copy number is constant. Reactivation of somatic mutability at cryptic bz2-mu1 alleles in inactive individuals by crossing to an active line seems not to involve an increase in Mu element copy number transmitted by the inactive individual. These and other results suggest that increases in Mu copy number occur late in plant development or in the gametophyte rather than after fertilization.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • DNA Transposable Elements*
  • Gene Amplification
  • Gene Expression Regulation
  • Meiosis
  • Mutation*
  • Zea mays / genetics*

Substances

  • DNA Transposable Elements