Studies of the Ca2+ requirements for glucose- and carbachol-induced augmentation of inositol trisphosphate and inositol tetrakisphosphate accumulation in digitonin-permeabilized islets. Evidence for a glucose recognition site in insulin secretion

J Biol Chem. 1988 Mar 15;263(8):3565-75.

Abstract

The metabolism of D-glucose is believed to initiate and regulate insulin secretion by islet beta-cells, although the identity of the metabolite which couples glucose metabolism to the cellular events involved in insulin secretion is unknown. An alternative hypothesis involves the presence of a glucoreceptor for which there has been no biochemical evidence. We have investigated whether glucose recognition by the beta-cell is coupled to phospholipase C. We have used digitonin-permeabilized, [3H]inositol-prelabeled islets to study glucose and carbachol activation of phospholipase C. In this model, carbachol recognition by its muscarinic receptor was coupled to phospholipase C activation. D-Glucose (but not L-glucose) also stimulated phospholipase C activity in these permeabilized islets. This effect was not due to glucose metabolism since glucose 6-phosphate did not affect phospholipase C activity and since phosphorylation of [3H]glucose was not detectable in digitonin-permeabilized islets. Glucose had no effect on the myo-inositol-1,4,5-trisphosphate-5-phosphatase or 3-kinase activities. In the absence of agonist, free Ca2+ concentrations between 0.1 and 1 microM (as determined with a Ca2+-specific electrode) did not influence phospholipase C activity. Stimulation of phospholipase C activity by either carbachol or glucose required Ca2+ in the submicromolar range and was optimal at 0.5 microM free Ca2+.myo-Inositol-1,3,4,5-tetrakisphosphate production from permeabilized islets was synergistically augmented by Ca2+ (0.5-10 microM) and glucose. Phospholipase C activity in islets is therefore not directly activated by free Ca2+ concentrations in the submicromolar range. Furthermore, glucose per se activates phospholipase C activity independently of glucose metabolism. A working hypothesis based on these findings is that glucose is recognized by a site which is coupled to phospholipase C in islets.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / pharmacology*
  • Carbachol / pharmacology*
  • Cell Membrane Permeability*
  • Cells, Cultured
  • Digitonin / pharmacology*
  • Glucose / pharmacology*
  • Inositol 1,4,5-Trisphosphate
  • Inositol Phosphates / biosynthesis*
  • Insulin / metabolism*
  • Insulin Secretion
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism*
  • Kinetics
  • Male
  • Rats
  • Rats, Inbred Strains
  • Receptors, Cell Surface / metabolism*
  • Sugar Phosphates / biosynthesis*

Substances

  • Inositol Phosphates
  • Insulin
  • Receptors, Cell Surface
  • Sugar Phosphates
  • glucose receptor
  • inositol-1,3,4,5-tetrakisphosphate
  • Inositol 1,4,5-Trisphosphate
  • Carbachol
  • Glucose
  • Digitonin
  • Calcium