Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors

Biochem Biophys Res Commun. 2017 Oct 28;492(4):652-658. doi: 10.1016/j.bbrc.2017.03.068. Epub 2017 Mar 18.

Abstract

The RNA-dependent RNA polymerases of Flaviviridae viruses are crucial for replication. The Flaviviridae polymerase is organized into structural motifs (A-G), with motifs F, A, C and E containing interrogating, priming and catalytic substrate-interacting sites. Modified nucleoside analogues act as antiviral drugs by targeting Flaviviridae polymerases and integrating into the synthesized product causing premature termination. A threonine mutation of a conserved serine residue in motif B of Flaviviridae polymerases renders resistance to 2'-C-methylated nucleoside analogues. The mechanism how this single mutation causes Flaviviridae viruses to escape nucleoside analogues is not yet known. Given the pivotal position of the serine residue in motif B that supports motif F, we hypothesized the threonine mutation causes alterations in nucleoside exploration within the entry tunnel. Implementing a stochastic molecular software showed the all-atom 2'-C-methylated analogue reaction within the active sites of wild type and serine-threonine mutant polymerases from Hepacivirus and Flavivirus. Compared with the wild type, the serine-threonine mutant polymerases caused a significant decrease of analogue contacts with conserved interrogating residues in motif F and a displacement of metal ion cofactors. The simulations significantly showed that during the analogue exploration of the active site the hydrophobic methyl group in the serine-threonine mutant repels water-mediated hydrogen bonds with the 2'-C-methylated analogue, causing a concentration of water-mediated bonds at the substrate-interacting sites. Collectively, the data are an insight into a molecular escape mechanism by Flaviviridae viruses from 2'-C-methylated nucleoside analogue inhibitors.

Keywords: Analogue; Flaviviridae; Interrogating; Polymerase; Virus; Water.

Publication types

  • Review

MeSH terms

  • Binding Sites
  • Enzyme Activation
  • Enzyme Inhibitors / chemistry*
  • Flaviviridae / chemistry*
  • Flaviviridae / enzymology*
  • Nucleosides / chemistry*
  • Protein Binding
  • RNA-Dependent RNA Polymerase / chemistry*

Substances

  • Enzyme Inhibitors
  • Nucleosides
  • RNA-Dependent RNA Polymerase