Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex
- PMID: 28336668
- PMCID: PMC5823611
- DOI: 10.1126/science.aag1417
Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.
Copyright © 2017, American Association for the Advancement of Science.
Figures
Similar articles
-
mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient.Cell. 2017 Oct 19;171(3):642-654.e12. doi: 10.1016/j.cell.2017.09.046. Cell. 2017. PMID: 29053970 Free PMC article.
-
Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.Mol Cell Biol. 2015 Jul;35(14):2479-94. doi: 10.1128/MCB.00125-15. Epub 2015 May 11. Mol Cell Biol. 2015. PMID: 25963655 Free PMC article.
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7. Science. 2015. PMID: 25567906 Free PMC article.
-
The lysosome: a crucial hub for AMPK and mTORC1 signalling.Biochem J. 2017 Apr 13;474(9):1453-1466. doi: 10.1042/BCJ20160780. Biochem J. 2017. PMID: 28408430 Review.
-
Amino Acid Sensing by mTORC1: Intracellular Transporters Mark the Spot.Cell Metab. 2016 Apr 12;23(4):580-9. doi: 10.1016/j.cmet.2016.03.013. Cell Metab. 2016. PMID: 27076075 Free PMC article. Review.
Cited by
-
The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics.Nat Commun. 2022 Oct 21;13(1):6283. doi: 10.1038/s41467-022-33933-2. Nat Commun. 2022. PMID: 36270994 Free PMC article.
-
Aster-B coordinates with Arf1 to regulate mitochondrial cholesterol transport.Mol Metab. 2020 Dec;42:101055. doi: 10.1016/j.molmet.2020.101055. Epub 2020 Jul 29. Mol Metab. 2020. PMID: 32738348 Free PMC article.
-
Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion.Biomolecules. 2023 Jan 24;13(2):224. doi: 10.3390/biom13020224. Biomolecules. 2023. PMID: 36830593 Free PMC article. Review.
-
Phosphoinositides as membrane organizers.Nat Rev Mol Cell Biol. 2022 Dec;23(12):797-816. doi: 10.1038/s41580-022-00490-x. Epub 2022 May 19. Nat Rev Mol Cell Biol. 2022. PMID: 35589852 Free PMC article. Review.
-
The cholesterol pathway: impact on immunity and cancer.Trends Immunol. 2022 Jan;43(1):78-92. doi: 10.1016/j.it.2021.11.007. Trends Immunol. 2022. PMID: 34942082 Free PMC article. Review.
References
-
- Nohturfft A, Zhang SC. Coordination of lipid metabolism in membrane biogenesis. Annual review of cell and developmental biology. 2009;25:539–566. - PubMed
-
- Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annual review of genetics. 2007;41:401–427. - PubMed
-
- Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annual review of physiology. 2006;68:159–191. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
