Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review

Brain Imaging Behav. 2018 Apr;12(2):585-612. doi: 10.1007/s11682-017-9708-9.


This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and the presence or absence of persistent functional disturbances. DTI research in adult mTBI would benefit from more standardized imaging and analytic approaches. We also found significant overlap in white matter abnormalities reported in mTBI with those commonly affected by SES or the presence of MDD and ADHD. We conclude that DTI is sensitive to a wide range of group differences in diffusion metrics, but that it currently lacks the specificity necessary for meaningful clinical application. Properly controlled longitudinal studies with consistent and standardized functional outcomes are needed before establishing the utility of DTI in the clinical management of mTBI and concussion.

Keywords: Concussion; DTI; Diffusion tensor imaging; Mild traumatic brain injury; Military TBI; Sport-related concussion; Systematic review; mTBI.

Publication types

  • Systematic Review

MeSH terms

  • Athletic Injuries / diagnostic imaging
  • Athletic Injuries / epidemiology
  • Brain / diagnostic imaging*
  • Brain Concussion / diagnostic imaging*
  • Brain Concussion / epidemiology
  • Brain Concussion / etiology*
  • Diffusion Tensor Imaging*
  • Humans
  • Military Personnel
  • Occupational Injuries / diagnostic imaging
  • Occupational Injuries / epidemiology