Electronic and Steric Optimization of Fluorogenic Probes for Biomolecular Imaging

J Org Chem. 2017 Apr 21;82(8):4297-4304. doi: 10.1021/acs.joc.7b00285. Epub 2017 Apr 11.

Abstract

Fluorogenic probes are invaluable tools for spatiotemporal investigations within live cells. In common fluorogenic probes, the intrinsic fluorescence of a small-molecule fluorophore is masked by esterification until entry into a cell, where endogenous esterases catalyze the hydrolysis of the masking groups, generating fluorescence. The susceptibility of masking groups to spontaneous hydrolysis is a major limitation of these probes. Previous attempts to address this problem have incorporated auto-immolative linkers at the cost of atom economy and synthetic adversity. Here, we report on a linker-free strategy that employs adventitious electronic and steric interactions in easy-to-synthesize probes. We find that X···C═O n→π* interactions and acyl group size are optimized in 2',7'-dichlorofluorescein diisobutyrate. This probe is relatively stable to spontaneous hydrolysis but is a highly reactive substrate for esterases both in vitro and in cellulo, yielding a bright, photostable fluorophore with utility in biomolecular imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Catalysis
  • Cell Culture Techniques
  • Culture Media
  • Fluorescent Dyes / chemistry*
  • Spectrometry, Fluorescence / methods*

Substances

  • Culture Media
  • Fluorescent Dyes