Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum
- PMID: 28368494
- DOI: 10.1093/infdis/jix156
Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum
Abstract
Background: The emergence of artemisinin resistance in the malaria parasite Plasmodium falciparum poses a major threat to the control and elimination of malaria. Certain point mutations in the propeller domain of PfKelch13 are associated with resistance, but PfKelch13 mutations do not always result in clinical resistance. The underlying mechanisms associated with artemisinin resistance are poorly understood, and the impact of PfKelch13 mutations on cellular biochemistry is not defined.
Methods: This study aimed to identify global biochemical differences between PfKelch13-mutant artemisinin-resistant and -sensitive strains of P. falciparum by combining liquid chromatography-mass spectrometry (LC-MS)-based proteomics, peptidomics, and metabolomics.
Results: Proteomics analysis found both PfKelch13 mutations examined to be specifically associated with decreased abundance of PfKelch13 protein. Metabolomics analysis demonstrated accumulation of glutathione and its precursor, gamma-glutamylcysteine, and significant depletion of 1 other putative metabolite in resistant strains. Peptidomics analysis revealed lower abundance of several endogenous peptides derived from hemoglobin (HBα and HBβ) in the artemisinin-resistant strains.
Conclusion: PfKelch13 mutations associated with artemisinin resistance lead to decreased abundance of PfKelch13 protein, decreased hemoglobin digestion, and enhanced glutathione production.
Keywords: PfKelch13; Plasmodium falciparum; artemisinin resistance; malaria; metabolomics; peptidomics.; proteomics.
© The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Similar articles
-
A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.Nature. 2015 Apr 30;520(7549):683-7. doi: 10.1038/nature14412. Epub 2015 Apr 15. Nature. 2015. PMID: 25874676 Free PMC article.
-
Molecular assessment of kelch13 non-synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017-2019).Malar J. 2020 May 24;19(1):191. doi: 10.1186/s12936-020-03264-y. Malar J. 2020. PMID: 32448203 Free PMC article.
-
Spatial and molecular mapping of Pfkelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: a systematic review.Lancet Infect Dis. 2021 Apr;21(4):e82-e92. doi: 10.1016/S1473-3099(20)30493-X. Epub 2020 Oct 27. Lancet Infect Dis. 2021. PMID: 33125913
-
The many paths to artemisinin resistance in Plasmodium falciparum.Trends Parasitol. 2023 Dec;39(12):1060-1073. doi: 10.1016/j.pt.2023.09.011. Epub 2023 Oct 11. Trends Parasitol. 2023. PMID: 37833166 Review.
-
Geographic expansion of artemisinin resistance.J Travel Med. 2019 Jun 1;26(4):taz030. doi: 10.1093/jtm/taz030. J Travel Med. 2019. PMID: 30995310 Review.
Cited by
-
Rapid classification of epidemiologically relevant age categories of the malaria vector, Anopheles funestus.Parasit Vectors. 2024 Mar 18;17(1):143. doi: 10.1186/s13071-024-06209-5. Parasit Vectors. 2024. PMID: 38500231 Free PMC article.
-
Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa.Nat Rev Microbiol. 2024 Feb 6. doi: 10.1038/s41579-024-01008-2. Online ahead of print. Nat Rev Microbiol. 2024. PMID: 38321292 Review.
-
The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites.PLoS Pathog. 2023 Dec 1;19(12):e1011814. doi: 10.1371/journal.ppat.1011814. eCollection 2023 Dec. PLoS Pathog. 2023. PMID: 38039338 Free PMC article.
-
Nutrient Limitation Mimics Artemisinin Tolerance in Malaria.mBio. 2023 Jun 27;14(3):e0070523. doi: 10.1128/mbio.00705-23. Epub 2023 Apr 25. mBio. 2023. PMID: 37097173 Free PMC article.
-
Ring-stage growth arrest: Metabolic basis of artemisinin tolerance in Plasmodium falciparum.iScience. 2022 Dec 5;26(1):105725. doi: 10.1016/j.isci.2022.105725. eCollection 2023 Jan 20. iScience. 2022. PMID: 36579133 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
