A Model to Explain Temperature Dependent Systemic Infection of Potato Plants by Potato virus Y

Plant Pathol J. 2017 Apr;33(2):206-211. doi: 10.5423/PPJ.NT.06.2016.0144. Epub 2017 Apr 1.

Abstract

The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of 16°C to 32°C. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at 20°C to 5.7 days at 28°C. The estimated lower thermal threshold was 15.6°C and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.

Keywords: Chu-Baek; Potato virus Y; potato; systemic infection model; temperature.