Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer

Nano Lett. 2017 May 10;17(5):2967-2972. doi: 10.1021/acs.nanolett.7b00221. Epub 2017 Apr 12.

Abstract

An all solid-state lithium-ion battery with high energy density and high safety is a promising solution for a next-generation energy storage system. High interface resistance of the electrodes and poor ion conductivity of solid-state electrolytes are two main challenges for solid-state batteries, which require operation at elevated temperatures of 60-90 °C. Herein, we report the facile synthesis of Al3+/Nb5+ codoped cubic Li7La3Zr2O12 (LLZO) nanoparticles and LLZO nanoparticle-decorated porous carbon foam (LLZO@C) by the one-step Pechini sol-gel method. The LLZO nanoparticle-filled poly(ethylene oxide) electrolyte shows improved conductivity compared with filler-free samples. The sulfur composite cathode based on LLZO@C can deliver an attractive specific capacity of >900 mAh g-1 at the human body temperature 37 °C and a high capacity of 1210 and 1556 mAh g-1 at 50 and 70 °C, respectively. In addition, the solid-state Li-S batteries exhibit high Coulombic efficiency and show remarkably stable cycling performance.

Keywords: Li7La3Zr2O12; Lithium sulfur batteries; carbon foam; nanoparticles; solid state electrolytes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.