Robust rotation of rotor in a thermally driven nanomotor
- PMID: 28393898
- PMCID: PMC5385497
- DOI: 10.1038/srep46159
Robust rotation of rotor in a thermally driven nanomotor
Abstract
In the fabrication of a thermally driven rotary nanomotor with the dimension of a few nanometers, fabrication and control precision may have great influence on rotor's stability of rotational frequency (SRF). To investigate effects of uncertainty of some major factors including temperature, tube length, axial distance between tubes, diameter of tubes and the inward radial deviation (IRD) of atoms in stators on the frequency's stability, theoretical analysis integrating with numerical experiments are carried out. From the results obtained via molecular dynamics simulation, some key points are illustrated for future fabrication of the thermal driven rotary nanomotor.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Similar articles
-
Significance tests on the output power of a thermally driven rotary nanomotor.Nanotechnology. 2017 May 26;28(21):215705. doi: 10.1088/1361-6528/aa6961. Epub 2017 May 4. Nanotechnology. 2017. PMID: 28471751
-
A nanoengine governor based on the end interfacial effect.Nanotechnology. 2016 Dec 9;27(49):495704. doi: 10.1088/0957-4484/27/49/495704. Epub 2016 Nov 9. Nanotechnology. 2016. PMID: 27827349
-
Position effects of the graphene-origami actuators on the rotation of a CNT nanomotor.Phys Chem Chem Phys. 2021 Sep 14;23(34):18893-18898. doi: 10.1039/d1cp01950c. Epub 2021 Aug 23. Phys Chem Chem Phys. 2021. PMID: 34612427
-
Rotation measurements of a thermally driven rotary nanomotor with a spring wing.Phys Chem Chem Phys. 2016 Aug 10;18(32):22478-86. doi: 10.1039/c6cp04359c. Phys Chem Chem Phys. 2016. PMID: 27464677
-
Molecular structure and rotary dynamics of Enterococcus hirae V₁-ATPase.IUBMB Life. 2014 Sep;66(9):624-30. doi: 10.1002/iub.1311. Epub 2014 Sep 17. IUBMB Life. 2014. PMID: 25229752 Review.
Cited by
-
Controlling CNT-Based Nanorotors via Hydroxyl Groups.Nanomaterials (Basel). 2022 Sep 27;12(19):3363. doi: 10.3390/nano12193363. Nanomaterials (Basel). 2022. PMID: 36234491 Free PMC article.
-
A Robot Platform for Highly Efficient Pollutant Purification.Front Bioeng Biotechnol. 2022 Jun 17;10:903219. doi: 10.3389/fbioe.2022.903219. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35782505 Free PMC article.
-
All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry.Sci Rep. 2019 Sep 20;9(1):13641. doi: 10.1038/s41598-019-49395-4. Sci Rep. 2019. PMID: 31541128 Free PMC article.
-
Dynamic behavior of a rotary nanomotor in argon environments.Sci Rep. 2018 Feb 22;8(1):3511. doi: 10.1038/s41598-018-21694-2. Sci Rep. 2018. PMID: 29472545 Free PMC article.
-
Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision.Sci Rep. 2018 Jan 17;8(1):913. doi: 10.1038/s41598-017-18789-7. Sci Rep. 2018. PMID: 29343738 Free PMC article.
References
-
- Bonard J.-M., JeanPaul S. & Thomas S. Why are carbon nanotubes such excellent field emitters. Ultramicroscopy 73, 7–10 (1998).
-
- Wilson N. R. & Macpherson J. V. Carbon nanotube tips for atomic force microscopy. Nature nanotechnology 4, 483–491 (2009). - PubMed
-
- Qian D., Wagner G. J., Liu W. K., Yu M.-F. & Ruoff R. S. Mechanics of carbon nanotubes. Applied mechanics reviews 55, 495–533 (2002).
-
- Cumings J. & Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
